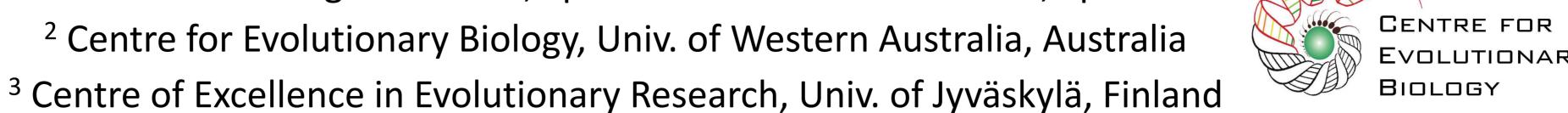
Comparing evolvabilities: common errors surrounding the use of coefficients of additive genetic variation


Francisco Garcia-Gonzalez ^{1,2,*}, Leigh W. Simmons², Joseph L. Tomkins², Janne S. Kotiaho³ and Jonathan P. Evans²

paco.garcia@ebd.csic.es

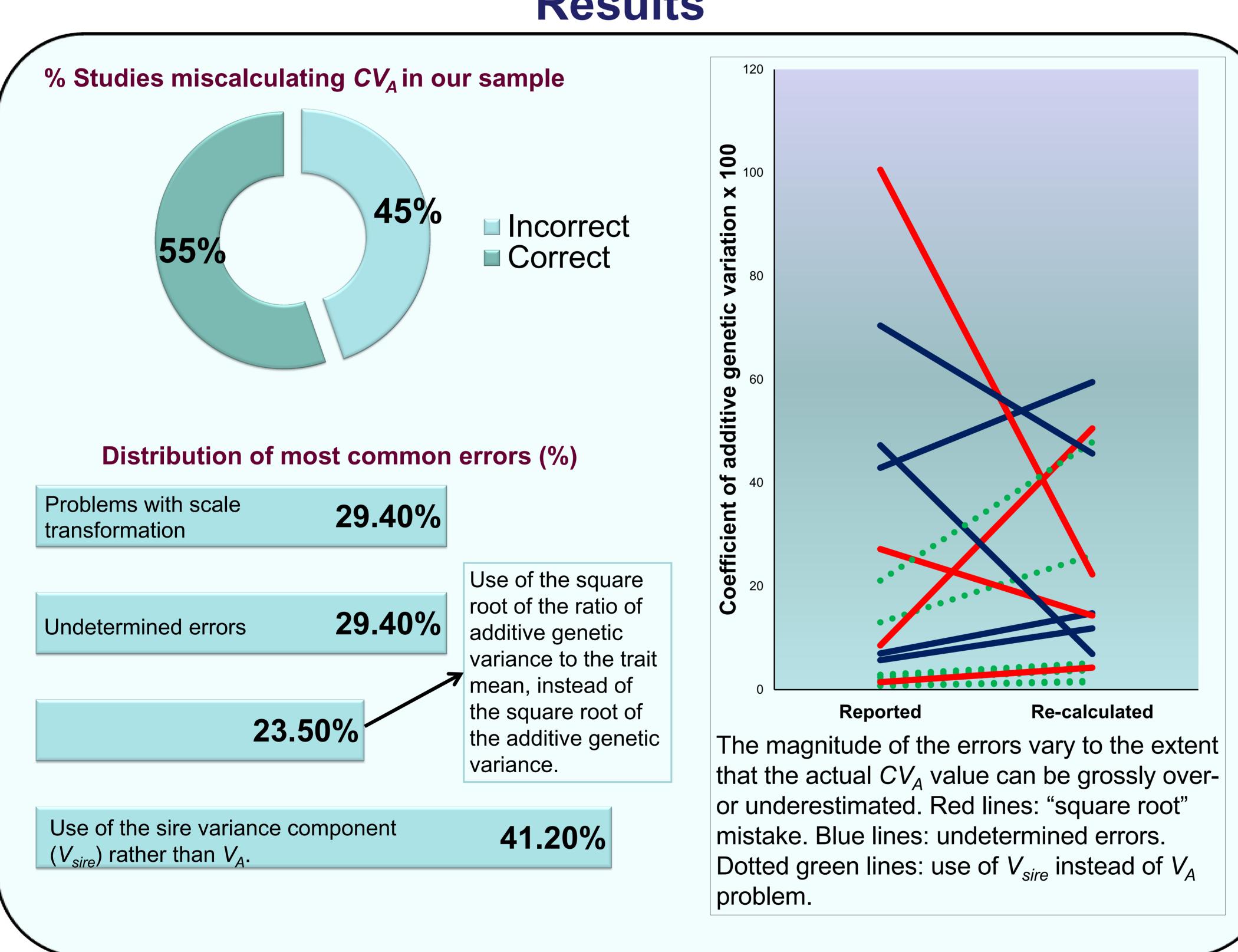
¹ Doñana Biological Station, Spanish Research Council CSIC, Spain

² Centre for Evolutionary Biology, Univ. of Western Australia, Australia

Evolvability, the ability of populations to respond to natural selection, is contingent on the level of additive genetic variation underlying trait expression. Measures of additive genetic variation standardized by the trait mean, CV_A (the coefficient of additive genetic variation) and its square (I_A) , are suitable measures of evolvability [1, 2].

 CV_A has been used widely to compare patterns of genetic variation. However, the use of the CV_A (or I_A) relies on the correct calculation of this parameter.

We reviewed a sample of quantitative genetic studies to determine the extent to which mistakes in the calculation of CV_A occur in the literature, and their potential consequences.


$CV_A = \frac{\sqrt{V_A}}{\overline{\mathbf{v}}}$ (Eq. 1) (Eq. 2) V_A , additive genetic variance

 $ar{X}$, phenotypic mean of the trait

Methods

Literature review. Step 1: Web of Science; articles citing Houle [1] and published in top journals within the Evolutionary Biology, Genetics and Heredity, Multidisciplinary Sciences, and Biology areas, between 2000 and 2010 (n=364 papers). Step 2: Focus on studies employing nested full-sib halfsib designs (n=49 papers). Step 3: Studies reporting CV_A (n=38 papers). Step 4: Recalculation of CV_{Δ} .

Results

Some issues to bear in mind when calculating and interpreting CV_A and I_A

Scaling effects

The interpretation of CV_{Δ} and I_{Δ} can be complicated by scaling effects [1] . For instance, where higher measurement errors are associated with small means (as one might expect), traits with smaller means will generally have comparatively higher CV_A / I_A .

Comparing traits with different dimensions

Correcting for the effects of dimensionality is not straightforward. In most cases dividing CV_{Δ} s by their dimensionalities is not an adequate correction [3,5].

Scale transformation

Only data on ratio and log-interval scales produce meaningful CV_A and I_A . CV_A and I_A have no meaning if they are calculated on transformed scales [2,4,5].

Discussion

A high proportion of studies reporting CV_A use incorrect methods for calculating this derived statistic and practices that render these coefficients meaningless are frequent

Clearly this is likely to severely compromise studies that use such estimates for comparative purposes.

We advocate that researchers adopt the following practices when reporting quantitative genetic data:

- Consistency in the calculation of CV_A , as in equation 1, and of I_A as in equation 2.
- CV_A and I_A need to be calculated using the raw (untransformed) scale, and data need to be on ratio or log-interval scale.
- Transparency in the reporting of methods and detailed reporting of summary statistics, sample sizes and genetic parameters.
- Where possible, reporting the standard errors of CV_A and I_A . Standard errors of these derived statistics would allow researchers to carry out unbiased meta-analyses of data on evolvabilities.

The adoption of these practices will broaden the scope and value of future investigations on variability in evolvabilities.

Acknowledgements

CGL2012-34685, for financial support.

References

- 1. Houle, D. 1992. Comparing evolvability and variability of quantitative traits. Genetics, 130: 195-204.
- 2. Hansen, T., C. Pélabon, and D. Houle. 2011. Heritability is not evolvability. Evolutionary Biology, 38: 258-277.
- 3. Lande, R. 1977. On comparing coefficients of variation. Systematic Zoology, 26: 214-217.

calculation and use of coefficients of additive genetic variation. *Evolution*, 66: 2341-2349.

4. Houle, D., C. Pelabon, G. P. Wagner, and T. F. Hansen. 2011. Measurement and meaning in biology. Quarterly Review of Biology, 86: 3-34. 5. Garcia-Gonzalez, F., L. W. Simmons, J. L. Tomkins, J. S. Kotiaho, and J. P. Evans. 2012. Comparing evolvabilities: Common errors surrounding the

We are very grateful to David Houle and Michael Morrissey. We thank the Australian Research Council, the Academy of Finland's Centre of Excellence in Evolutionary Research, and the Spanish Ministry of Economy through the Ramon y Cajal program and grant (co-funded by the European Regional Development Fund)

